US009207941B2

a2 United States Patent (10) Patent No.: US 9,207,941 B2
Albrekht et al. 45) Date of Patent: Dec. 8, 2015
(54) SYSTEMS, APPARATUSES, AND METHODS (51) Imt.CL
FOR REDUCING THE NUMBER OF SHORT GOG6F 9/30 (2006.01)
INTEGER MULTIPLICATIONS GOGF 9/00 (2006.01)
(52) US.CL
(71) Applicants:Ilya Albrekht, Phoenix, AZ (US); CPC .o GO6F 9/30145 (2013.01)
Elmoustapha Ould-Ahmed-Vall, (58) Field of Classification Search
Chandler, AZ (US) None
See application file for complete search history.

(72) Inventors: Ilya Albrekht, Phoenix, AZ (US);

Elmoustapha Ould-Ahmed-Vall, (56) References Cited
Chandler, AZ (US) U.S. PATENT DOCUMENTS

(73) Assignee: Intel Corporation, Santa Clara, CA 2012/0221618 AL* 8/2012 Feixetal. .ocooonves 708/524
us) * cited by examiner

(*) Notice: Subject to any disclaimer, the term of this Primary Examiner — Scott Sun .
patent is extended or adjusted under 35 (74) Attorney, Agent, or Firm — Nicholson De Vos Webster

U.S.C. 154(b) by 419 days. & Elliott LLP
(57 ABSTRACT

Systems, methods, and apparatuses for calculating a square of
a data value of a first source operand, a square of a data value

(21) Appl. No.: 13/840,985

(22) Filed: Mar. 15, 2013 of'a second source operand, and a multiplication of the data of
the first and second operands only using one multiplication
(65) Prior Publication Data are described.
US 2014/0281395 Al Sep. 18, 2014 20 Claims, 15 Drawing Sheets
SOURCE 1 | PO SOURCEZ g
01 v : 103
w7/

PV TR AT H 2
DESTINATION 4 ‘: :
w0 B A'B A

US 9,207,941 B2

Sheet 1 of 15

Dec. 8, 2015

U.S. Patent

b Ao

i - 7
. \\\»\
i
/oo
.\,
E. = = "
e
P
\.\ g
.\\
-
.
-
\.\\\ .
e }D ..f;./.
. e XIEA N
z VAN ¥ h

& A0S

\z@wﬁ&ammﬂ

N

3

0L

e

LHOUNGs

U.S. Patent Dec. 8, 2015

Sheet 2 of 15

PROCESBOR
B

US 9,207,941 B2

288

ARCHITECTURAL REGISTERS

288

RACKELD DATA REGIRTERS

MASK REGIBTERE
287

PACKED DATA OFERATION

EXECUTION LOGIG
38

Figure 2

U.S. Patent Dec. 8, 2015 Sheet 3 of 15 US 9,207,941 B2

FETOH SINGLE SQRMUL INSTRUCTION, THE SGRMUL INSTRUCTION
INCLUDING A FIRST AND SECOND SOURCE OPERAND AND A
DESTINATION OPERAND 301

¥

CORE SQRMUL %‘\ESTF;\N O 38

QQ”QER E SOURCE OPERANDS VALUES 0B

¥

EXECUTE THE SORMUL INSTRUCTION TO CALCIHATE:
1A BQUARE QF ADATA K"%J& {F THE FIRST SOURCE QPERAND
2} A SQUARE OF A DATA VALUE OF THE SECOND SOURCE GPERAND
3PAMULTIPLICATION OF A DATAVALUE OF THE FIRST SQURCE
OPFERAND BY A DATAVALUE OF THE SECOND SOURCE QFERAND
307

v

STORE THE CALCULATED VALUES IN THE DESTINATION OPERAND 308

U.S. Patent Dec. 8, 2015 Sheet 4 of 15 US 9,207,941 B2

CONTRUCT A TEMPORARY VARIABLE (t=a"2%), WHERE A = THE
DATA VALUE OF THE FIRSY BOURCE OPERARND, 8 = THE DATAVALUE
OF THE SECOND SOURCE OPERAND, AND N = LOGEHEASE OF THE
INTEGERS OF THE FIRST AND SECOND BQURCE OFERANDS) 481

¥
CALCUHLATE A BQUARE OF THE TEMPORARY VARIABLE TO CREATE A
SECOND TEMPORARY VARIABLE {ist*t=a® 2™+ 2ah*2®Nsp¥)

¥

EXTRACT &%, A%B, AND 8% FROM THE SECOND TEMPORARY VARIABLE
BY:

1) RIGHT SHIFTING THE SECOND TEMPQRARY VARIABLE BY 4N TO
ERTRACT &%

2} ANDING THE SECOND TEMPORARY VARIABLE WITH & VALUE OF

(1 LEFT SHIFTED 8Y 2% MINUS 1) AND THEN RIGHT S8HIFTING THE
ANDED RESULT BY 2V PLUS 1 TO EXTRACT A8

23 ANDING THE SECOND TEMBORARY VARIABLE WITH A ONES
COMPLEMENT OF A VALUE OF (1 LEFT SHIFTED BY &) MINUS 1) TO
EXTRACT B

STORE THE BEXTRACTED VALUES 407

Figure 4

U.S. Patent Dec. 8, 2015 Sheet 5 of 15 US 9,207,941 B2

CONTRUCT A TEMPORARY VARIABLE (=3 25} WHERE & = THE
DATAVALUE OF THE FIRST SCURCE OPERAND, B = THE DATAVALUE
OF THE SECOND SOURCE OPERAND, AND N = LOGZ{BASE OF THE
INTEGERS OF THE FIRBT AND SECOND SOQURCE OPERANDE! BR1

¥
CALCULATE A SQUARE OF THE TEMPORARY VARIABLE
(etimgt 2N 2 2eh%) AND STORE IN TWO TEMPORARY LOCATIONS
(LOCATION 1 AND LOTATION 2)

k:

EXTRACT &%, A'B, AND B® FROM THE STORED SQUARED TEMPORARY
VARIABLE BY.

1) THE DATA OF LOCATION 1 = &7

2Y RIGHT SHIFTING THE DATA OF LOCATION 2 BY N+ TO EXTRACT
AT

3} ANDING THE DATA OF LOCATON 2 BY A ONES COMPLEMENT OF &
VALUE OF 21 TO EXTRACT B

508

STORE THE EXTRACTED VALUERS 807

Figure 5

US 9,207,941 B2

Sheet 6 of 15

Dec. 8, 2015

U.S. Patent

AN
b O 40 PO

&

BHA

G anbid

I
‘ L35
,\ -~

OUN0E ONOOES ONY LSHI 3HL 40 3218 3L
L= T ONY (BONYEEH0 B0NN0G ONOGIS ONV LS
A0 SHIOALING FHL A0 ISVEIZHOT = N IHIHM = NY 8

At B RS EE L

m 2
3 FHL

505

P 3o 40 M0

US 9,207,941 B2

Sheet 7 of 15

Dec. 8, 2015

U.S. Patent

£
&
5118 ¥
G14 s1815y00Y SR M

DG4 3HL WILBTY
A% LN OADY S KN

m.w.mmw w32

RN
LA
UL TPTIT AT

HEBYETY

J

. ./\n
ZLG LY
0L/ shepsiBoy Joies,

SLiE 08

{A4im)
S 9 MALSITH WOVYLE dd HY YOS

SLUHE YL H B
gy wemben esodnd s

GOL RANLTILHDNY HALBIDIY

£ 94

US 9,207,941 B2

Sheet 8 of 15

Dec. 8, 2015

U.S. Patent

675 7i8
el HND T N 30V Vv
HHOYD 708
71 LN B YA
3 098 (SAI5(T1D NOLNaEXE

a8 (BILINN

$5500¥

KON

|
i

459 (14N ST HALSIOR WOBAH |
e - | e m -
i 968 {814 zo m:.ﬁbﬂ HIS ;o LY ‘W.EM.&\MM&EMK m i3 Bl
ity plsielpieh
m wa PW?_D m Dmm .mm,,mm:w

MO TYIOYTIY [AR p e
e e QLTI GMING. .] IMIDNE NOLNOE
: e m 08
W O.\m.m.rf :&Dﬁ\zwuwﬁm / xwmm/_., \..Eau \w.&ﬁwwxg
% ",
e m,,wam.g.&zx_w ! ,,f 065 500
wwm LN g A.L,zc:o@.& N L 758 1NfS
B RER 1NA HOVO NOLLORHLSN] NOLLIGE Y HONYHE
S e gi8 7 A T
yig et L0 OvIE AHONIH, 718 | ﬁm oo | 908 s
£y
| IR0) wowan | 30vis VR4 | 3IN0IHOS foNNaY 00T acooaa O SO0 o 3
I e e ETE s |1 1 e

Y8 Bl 008 ANIEdig

US 9,207,941 B2

Sheet 9 of 15

Dec. 8, 2015

U.S. Patent

R
AHOYAVIVE LT

4

k4

HELS WELE
LHAANGD AHBANSS
Dmmmﬁmz u“mm?mx

&

¥if
SUILSEEY

oA

¥ % % ki

WA]
FILLNAT ALY

BI6
Y MOLDEA B0

&

SHALBIDEY UBYW LM

86 "8l

208
HHOALIN DN
%
£ 4

P08
AHOYD
71 3K 40 JE8ENRS oo
&

906

YO T

i g
#3L030 MY IYOS

018 806
LINEY LINDY
HOLTEA HYIYDS
[)

» 1
006
BA00IA NOLLOMULENM

e Dld

US 9,207,941 B2

Sheet 10 of 15

Dec. 8, 2015

U.S. Patent

910} {STLND
HATIOHINGD
4N4

;
m
;
i

rrrs Rersr vrssr. serms resre mrres m

vLoL (SN
SETIONINGD
AROWEN

diais wiie cdice wiide disds AiwEs iweEn msss

2301 N

e . s s s

T GRUYHE

(V] &1

G001 (STLING 3HG

GALYENAIN

il e

GL0L LiND

ANAEY WHISAR

§

m

MEDDY SO0

wrers creer eeers crnvs oeem

NFOOL
(Shimi

AV

"y
i
i
H

:

awmn pmanr

fed

areee rieer coere comome § ovory

5

§

aanr GwAn anaar awan s e

YPODL
SRV

AHOYD

YEOOL H00

2001 o
F50480d

WOHEAS

s omees mewew onems e’

#«va.w
0001 HO

gL

LA

Proasy

SEHEDOU

U.S. Patent Dec. 8, 2015 Sheet 11 of 15 US 9,207,941 B2

-
§ Lo - 1405 |

KA AL e . H £ 4 A0
JECSSY &3 L § e i "§4{§;@

SR Sl o
| || CONTROLLER
HUB 1420
: LA SIS AN N
L e | A1 MEMORY
i SROCESSOR OMOH 1480 E
i s

NN

Lo e

{
60 - o
1160 . - o
! E

US 9,207,941 B2

Sheet 12 of 15

Dec. 8, 2015

U.S. Patent

8221 e P (82
%, i F\J\ 71N T]
Qw/m.\ .}ar\i&r‘m] mmmm.waw\&
FOVHOLS Y1V RO “weh JRYOBAT
A
7 B
gLz} AR #1721 G121
UOSSZOU Of OIINY SEOIAF0 O AS0HEE $NY
S

124 B

78] e

o
>4

1474
AN

FHOSS AT

HSH AL RN

Bty

el Pl 0474

b M!‘Z»Q\,»:.

5 {
b B3I .

YO YL
v WSS AO0HA0T
Mii, 8881 ;

L]

HOSEID0U

US 9,207,941 B2

gitt
Of A0

a6et

geE| e el

86} i A
LASEHC

¥oE}

¢l

vhEL !Mw %

H
2EEL Vw

Sheet 13 of 15

ogey jdd) dd

vinch G i

, 3 %
QEE L et aost I

Lo BT

T

Dec. 8, 2015

HOSSA00U

1o

ietl

AHOHNEN

P

e

U.S. Patent

.
-~
v“’“

L e v
| ssomagon

US 9,207,941 B2

gi01 .uma M

ovyl o Gy WATIOHLNGD
oL LN Y | .

LA AYIasia | CEPPUNOYIRGE e g JHOWEN

ELVHOTLN

8103 (SHIND L
HATIOUINGD ; s
$ng

Sheet 14 of 15

Dbt pbbe bbts bbbbs GbRNA EANPS ARMDN RENEe PRRRD NRRRA. RRPAS NARARe ARARR PR,

Dec. 8, 2015

9001 (8T LINAT FHOVD (9HvYHE

% % u% mmwim?m

Ty
PONPOM
PABING
m JHAVO FHOYD i 20¥1

AL RIAME L 08 AHD Y NO WELSAS

PR T P VPV

o

iy
M Y00,
W
w

0101 LING
LNZDY WZLSAS

S

U.S. Patent

Pl HORSHEOOM NOLLYOT daY

e et
s\.\\\ i,

f

\mamw AOVTTONY T 1AET HE

US 9,207,941 B2

Sheet 15 of 15

Dec. 8, 2015

U.S. Patent

THYMLA0S ,// éwmﬂm&wﬁq
T szs.\e.»zx;ts,\»sah.nsas...“sause:e...:. e /sezs:»;zxi e e e e
FeYAMTHYH “

wm

\

&5

\

&\\Ilic&!..ff.fflw T :lix.l.f&‘
d - m;m &s %@OQ

7 ", ya

L POCH WO 98 { 1AR NOULDIMISON ..,w

//..r S hrayelt.s £ \\\. z/. 398 y Vi
e _ANLYNSELTY

¥

RS S
o o

\\

e

{8061 2060 AV 98 x

.r(

,‘>

I

e

;o EGL WHLHIANGD
Mo NORLOHLISNE

[{A&n\\

;53
o
H

1

; e,
ol 3 \.\ ,.}.1.

f..v

S/ ¢

\lc&\.\x\li !.cl_.l\l-il

/,, W\ “B16, TO00 AMYNIE

18 NOUONM SN
/

%

\ .‘.-/

]
8851
A0 148 _,,“Q,maoﬁm._.nzw

98X NG 18v4

ey

PLGL 2W0T 1AS NOLLON wﬁmwxm

X NY ANOHLIAM MOSSI00

LY ML ,ﬂ,_owu% #ek

US 9,207,941 B2

1
SYSTEMS, APPARATUSES, AND METHODS
FOR REDUCING THE NUMBER OF SHORT
INTEGER MULTIPLICATIONS

FIELD OF INVENTION

The field of invention relates generally to computer pro-
cessor architecture, and, more specifically, to instructions
which when executed cause a particular result.

BACKGROUND

An instruction set, or instruction set architecture (ISA), is
the part of the computer architecture related to programming,
and may include the native data types, instructions, register
architecture, addressing modes, memory architecture, inter-
rupt and exception handling, and external input and output
(I/0). It should be noted that the term instruction generally
refers herein to a macro-instruction—that is instructions that
are provided to the processor for execution—as opposed to
micro-instructions or micro-ops—that result from a proces-
sor’s decoder decoding macro-instructions).

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example and
not limitation in the figures of the accompanying drawings, in
which like references indicate similar elements and in which:

FIG. 1 illustrates an exemplary execution of the SQRMUL
instruction.

FIG. 2 is a block diagram of an exemplary embodiment of
a processor (processor core) to execute one or more instruc-
tions.

FIG. 3 illustrates an embodiment of the execution of a
SQRMUL instruction in a processor.

FIGS. 4 and 5 illustrate embodiments of methods for pro-
cessing a SQRMUL instruction.

FIG. 6 illustrates an exemplary method of selecting
between the flows of FIGS. 4 and 5.

FIG. 7 is a block diagram of a register architecture 700
according to one embodiment of the invention.

FIG. 8A is a block diagram illustrating both an exemplary
in-order pipeline and an exemplary register renaming, out-of-
order issue/execution pipeline according to embodiments of
the invention.

FIG. 8B is a block diagram illustrating both an exemplary
embodiment of an in-order architecture core and an exem-
plary register renaming, out-of-order issue/execution archi-
tecture core to be included in a processor according to
embodiments of the invention.

FIGS. 9A-B illustrate a block diagram of a more specific
exemplary in-order core architecture, which core would be
one of several logic blocks (including other cores of the same
type and/or different types) in a chip.

FIG. 10 is a block diagram of a processor 1000 that may
have more than one core, may have an integrated memory
controller, and may have integrated graphics according to
embodiments of the invention.

FIGS. 11-14 are block diagrams of exemplary computer
architectures.

FIG. 15 is a block diagram contrasting the use of a software
instruction converter to convert binary instructions in a source
instruction set to binary instructions in a target instruction set
according to embodiments of the invention.

DETAILED DESCRIPTION

In the following description, numerous specific details are
set forth. However, it is understood that embodiments of the

10

20

25

35

40

45

55

65

2

invention may be practiced without these specific details. In
other instances, well-known circuits, structures and tech-
niques have not been shown in detail in order not to obscure
the understanding of this description.

References in the specification to “one embodiment,” “an
embodiment,” “an example embodiment,” etc., indicate that
the embodiment described may include a particular feature,
structure, or characteristic, but every embodiment may not
necessarily include the particular feature, structure, or char-
acteristic. Moreover, such phrases are not necessarily refer-
ring to the same embodiment. Further, when a particular
feature, structure, or characteristic is described in connection
with an embodiment, it is submitted that it is within the
knowledge of one skilled in the art to affect such feature,
structure, or characteristic in connection with other embodi-
ments whether or not explicitly described.

Overview

The instruction set architecture is distinguished from the
microarchitecture, which is the internal design of the proces-
sor implementing the ISA. Processors with different microar-
chitectures can share a common instruction set. For example,
Intel Pentium 4 processors, Intel Core processors, and
Advanced Micro Devices, Inc. of Sunnyvale Calif. processors
implement nearly identical versions of the x86 instruction set
(with some extensions having been added to newer versions),
but have different internal designs. For example, the same
register architecture of the ISA may be implemented in dif-
ferent ways in different micro-architectures using well known
techniques, including dedicated physical registers, one or
more dynamically allocated physical registers using a register
renaming mechanism (e.g., the use of a Register Alias Table
(RAT), a Reorder Buffer (ROB) and a retirement register file
as described in U.S. Pat. No. 5,446,912; the use of multiple
maps and a pool of registers as described in U.S. Pat. No.
5,207,132), etc. Unless otherwise specified, the phrases reg-
ister architecture, register file, and register refer to that which
is visible to the software/programmer and the manner in
which instructions specify registers. Where specificity is
desired, the adjective logical, architectural, or software vis-
ible will be used to indicate registers/files in the register
architecture, while different adjectives will be used to desig-
nate registers in a given micro-architecture (e.g., physical
register, reorder buffer, retirement register, register pool).

An instruction set includes one or more instruction for-
mats. A given instruction format defines various fields (num-
ber ofbits, location of bits) to specify, among other things, the
operation to be performed and the operand(s) on which that
operation is to be performed. A given instruction is expressed
using a given instruction format and specifies the operation
and the operands. An instruction stream is a specific sequence
of instructions, where each instruction in the sequence is an
occurrence of an instruction in an instruction format.

Scientific, financial, auto-vectorized general purpose,
RMS (recognition, mining, and synthesis)/visual and multi-
media applications (e.g., 2D/3D graphics, image processing,
video compression/decompression, voice recognition algo-
rithms and audio manipulation) often require the same opera-
tion to be performed on a large number of data items (referred
to as “data parallelism”). Single Instruction Multiple Data
(SIMD) refers to a type of instruction that causes a processor
to perform the same operation on multiple data items. SIMD
technology is especially suited to processors that can logi-
cally divide the bits in a register into a number of fixed-sized
data elements, each of which represents a separate value. For
example, the bits in a 64-bit register may be specified as a
source operand to be operated on as four separate 16-bit data
elements, each of which represents a separate 16-bit value. As

US 9,207,941 B2

3

another example, the bits in a 256-bit register may be speci-
fied as a source operand to be operated on as four separate
64-bit packed data elements (quad-word (Q) size data ele-
ments), eight separate 32-bit packed data elements (double
word (D) size data elements), sixteen separate 16-bit packed
data elements (word (W) size data elements), or thirty-two
separate 8-bit data elements (byte (B) size data elements).
This type of data is referred to as the packed data type or
vector data type, and operands of this data type are referred to
as packed data operands or vector operands. In other words, a
packed data item or vector refers to a sequence of packed data
elements; and a packed data operand or a vector operand is a
source or destination operand of a SIMD instruction (also
known as a packed data instruction or a vector instruction).

By way of example, one type of SIMD instruction specifies
a single vector operation to be performed on two source
vector operands in a vertical fashion to generate a destination
vector operand (also referred to as a result vector operand) of
the same size, with the same number of data elements, and in
the same data element order. The data elements in the source
vector operands are referred to as source data elements, while
the data elements in the destination vector operand are
referred to a destination or result data elements. These source
vector operands are of the same size and contain data ele-
ments of the same width, and thus they contain the same
number of data elements. The source data elements in the
same bit positions in the two source vector operands form
pairs of data elements (also referred to as corresponding data
elements; that is, the data element in data element position O
of each source operand correspond, the data element in data
element position 1 of each source operand correspond, and so
on). The operation specified by that SIMD instruction is per-
formed separately on each of these pairs of source data ele-
ments to generate a matching number of result data elements,
and thus each pair of source data elements has a correspond-
ing result data element. Since the operation is vertical and
since the result vector operand is the same size, has the same
number of data elements, and the result data elements are
stored in the same data element order as the source vector
operands, the result data elements are in the same bit positions
of the result vector operand as their corresponding pair of
source data elements in the source vector operands. In addi-
tion to this exemplary type of SIMD instruction, there are a
variety of other types of SIMD instructions (e.g., that have
only one or has more than two source vector operands; that
operate in a horizontal fashion; that generate a result vector
operand that is of a different size, that have a different size of
data elements, and/or that have a different data element
order). It should be understood that the term destination vec-
tor operand (or destination operand) is defined as the direct
result of performing the operation specified by an instruction,
including the storage of that destination operand at a location
(be it a register or at a memory address specified by that
instruction) so that it may be accessed as a source operand by
another instruction (by specification of that same location by
the another instruction.

The SIMD technology, such as that employed by the Intel®
Core™ processors having an instruction set including x86,
MMX™, Streaming SIMD Extensions (SSE), SSE2, SSE3,
SSE4.1, and SSE4.2 instructions, has enabled a significant
improvement in application performance (Core™ and
MMX™ are registered trademarks or trademarks of Intel
Corporation of Santa Clara, Calif.). An additional set of
SIMD extensions, referred to the Advanced Vector Exten-
sions (AVX) (AVX1 and AVX?2) and using the VEX coding
scheme, has been released and/or published (e.g., see Intel®
64 and IA-32 Architectures Software Developers Manual,

25

30

35

40

45

4

October 2011; and see Intel® Advanced Vector Extensions
Programming Reference, June 2011).

Some regular mathematic operations like calculating
a*+a*b+b” and a[i]=b[i]* are quite frequent for matrix and
long number multiplications. Such mathematic operations
use a lot of multiplication instructions which are still quite
expensive in terms of latency on the modern CPUs. For
example, let a, b be unsigned integers in base B. The code for
calculating a®+a*b+b? is
1: a_sq=a*a;

2: a_times_b=a*b;
3: b_sq=b*b;
4: additions of the three multiplications

For modern CPUs each multiplication takes ~5 cycles, so
the total latency for 3 multiplications will be 15 cycles.

Below are embodiments of an instruction generically
called square-multiply (SQRMUL) instruction of the instruc-
tion set and embodiments of systems, architectures, instruc-
tion formats, etc. that may be used to improve this latency.
The execution of a SQRMUL calculates a square of a data
value of a first source operand, a square of a data value of a
second source operand, and a multiplication of the data of the
first and second operands and stores all three calculations in a
single destination operand.

FIG. 1 illustrates an exemplary execution of the SQRMUL
instruction. Two source registers 101 and 103 hold values A
and B respectively. These values are processed by execution
logic 107 to produce A%, A*B, and B. These results are stored
in a destination register 105. This register may be general-
purpose register (e.g., a doubleword sized register) or a
packed-data register (with data element positions dedicated
to storing the calculated values). While a particular order is
illustrated, any other order may be used for storing the calcu-
lated values.

FIG. 2 is a block diagram of an exemplary embodiment of
a processor (processor core) 200 to execute one or more
SQRMUL instructions 204. In some embodiments, the pro-
cessor may be a general-purpose processor (e.g., of the type
used in desktop, laptop, servers, and like computers). Alter-
natively, the processor may be a special-purpose processor.
Examples of suitable special-purpose processors include, but
are not limited to, network processors, communications pro-
cessors, cryptographic processors, graphics processors, co-
processors, embedded processors, digital signal processors
(DSPs), and controllers, to name just a few examples. The
processor may be any of various complex instruction set
computing (CISC) processors, various reduced instruction
set computing (RISC) processors, various very long instruc-
tion word (VLIW) processors, various hybrids thereof, or
other types of processors entirely.

The processor 200 includes architecturally-visible regis-
ters (e.g., an architectural register file) 205. The architectural
registers may also be referred to herein simply as registers.
Unless otherwise specified or apparent, the phrases architec-
tural register, register file, and register are used herein to refer
to registers that are visible to the software and/or programmer
and/or the registers that are specified by macroinstructions or
assembly language instructions to identify operands. These
registers are contrasted to other non-architectural or non-
architecturally visible registers in a given microarchitecture
(e.g., temporary registers used by instructions, reorder buff-
ers, retirement registers, etc.). The registers generally repre-
sent on-die processor storage locations. The illustrated archi-
tectural registers include packed data registers 206. Each of
the packed data registers may be operable to store packed or
vector data. The illustrated architectural registers may also
include packed data operation mask registers 207. Each of the

US 9,207,941 B2

5

packed data operation mask registers may be operable to store
apacked data operation mask. These registers may be referred
to as writemask registers in this description. Packed data
operands may be stored in the packed data registers 207.

The processor also includes execution logic 208. The
execution logic is operable to execute or process the one or
more SQRMUL instructions 204. In some embodiments, the
execution logic may include particular logic (e.g., particular
circuitry or hardware potentially combined with firmware) to
execute these instructions.

Exemplary Format of SQRMUL

An exemplary format of this instruction is “SQRMUL
DEST, SOURCE 1, SOURCE 2” where the all of the oper-
ands are registers. In some embodiments, the registers are
general-purpose registers. These registers may be of any size
including, but not limited to, 8-, 16-, 32-, 64-, and 128-bit. In
other embodiments, the registers are floating-point or packed
data registers. In other embodiments, the sources are general-
purpose registers and the destination is a packed data register.
The source registers store unsigned integers in most embodi-
ments.

Exemplary Methods of Execution of SQRMUL

FIG. 3 illustrates an embodiment of the execution of a
SQRMUL instruction in a processor. A SQRMUL instruction
with a first and second source register operand, a destination
register operand, and an opcode is fetched at 301.

The SQRMUL instruction is decoded by decoding logic at
303.

The source operands’ values are retrieved/read at 305. For
example, the source registers are read.

The decoded SQRMUL instruction (or operations com-
prising such an instruction such as microoperations) is
executed by execution resources such as one or more func-
tional units at 307 to calculate a square of'a data value of a first
source operand, a square of a data value of a second source
operand, and a multiplication of the data of the first and
second operands and stores all three calculations in a single
destination operand

The calculated values are stored into the destination regis-
ter operand at 309. These values may be stored in a particular
order such as from least significant to most significant (A2,
A*B, to B?) or the opposite of that, etc. In some embodiments,
the calculated values are stored in data elements of a packed
data register.

While 307 and 309 have been illustrated separately, in
some embodiments they are performed together as a part of
the execution of the instruction.

FIGS. 4 and 5 illustrate embodiments of methods for pro-
cessing a SQRMUL instruction. In these embodiments, L is
defined as a general-purpose register size in bits (32 or 64),
and a and b are unsigned integers of the first and second
operands respectively in base B with N equal to log,(B) in
bits. In the examples below, a or A represents that data stored
in the first source and b or B represents the data stored in the
second source. Shifting, etc. is done by number of bits in
some embodiments.

FIG. 4 illustrates an embodiment of a method for process-
ing a SQRMUL instruction. This is a general case where
L>=6N. In this embodiment it is assumed that some, ifnot all,
of'the operations 301-305 have been performed earlier, how-
ever, they are not shown in order to not obscure the details
presented below. For example, the fetching and decoding are
not shown, nor is the operand retrieval shown.

At 401, a temporary variable t is constructed. In some
embodiments, this temporary variable is constructed by left
shifting A by 2N and then ORing that shifted value by B. In

10

20

40

45

55

6
other words, t=(A<<2*N)IB. Typically this takes two clock
cycles. The resulting value of t is A*2*V4B.

The square of the temporary variable is calculated at 403.
This creates a second temporary variable of t=t*t=A>*2*"4
2AB*2*4+B2. In some instances, this multiplication takes 5
cycles.

A2 A*B, and B are extracted from the second temporary
variable at 405. A? is extracted by right shifting the second
temporary variable by 4N. In other words, A>~t>>4N. A*B is
extracted by ANDing the second temporary variable with a
value of (1 left shifted by 2™) minus 1, and then right shifting
by 2N plus 1. In other words, A¥*B=(t&(1<<2"-1))>>(2N+
1). Finally, B? is extracted by ANDing the second temporary
variable with a ones complement of a value of ((2 left shifted
by N) minus 1). In other words, B*~t&~(2<<N-1). In some
systems this takes 2-3 cycles in total.

The extracted values are stored at 407. In some embodi-
ments, A%, A*B, and B are stored in the lower, middle, and
upper quadrants of a doubleword respectively. In other
embodiments, these values are stored in separate data ele-
ments of a packed data register.

FIG. 5 illustrates an embodiment of a method for process-
ing a SQRMUL instruction. This is a general case where
4N=L. In this embodiment it is assumed that some, if not all,
of'the operations 301-305 have been performed earlier, how-
ever, they are not shown in order to not obscure the details
presented below. For example, the fetching and decoding are
not shown, nor is the operand retrieval shown.

At 501, a temporary variable t is constructed. In some
embodiments, this temporary variable is constructed by left
shifting A by 2N and then ORing that shifted value by B. In
other words, t=(A<<2*N)IB. Typically this takes two clock
cycles. The resulting value of t is A*2*V+B.

The square of the temporary variable is calculated and
stored in a first and second location at 503. This creates
locations that store A>*2*V+2AB*22V1+B?. In some instances,
this multiplication takes 5 cycles. In some embodiments, the
first and second locations are registers.

A2, A*B, and B? are extracted at 505. A2 is the value stored
in the first location. In other words, A>=location 1. A*B is
extracted by right shifting the data stored in the second loca-
tion by (2N plus 1). In other words, A*B=location 2>>(2N+
1). Finally, B is extracted by ANDing the contents of the
second location with a ones complement of a value of (2%
minus 1). In other words, B*=location 2&~(2<<2"-1). In
some systems this takes 1 cycle in total.

The extracted values are stored at 507. In some embodi-
ments, A%, A*B, and B are stored in the lower, middle, and
upper quadrants of a doubleword respectively. In other
embodiments, these values are stored in separate data ele-
ments of a packed data register.

FIG. 6 illustrates an exemplary method of selecting
between the flows of FIGS. 4 and 5. At 601, a determination
of'if 4AN=L is made. If yes, then at 603 FIG. 5’s flow is used.
If no, then at 605 FIG. 4’s flow is used.

While the above has been described with respect to a SQR-
MUL instruction, the code sequences above may be per-
formed by multiple instructions in processors that do not
support SQRMUL.

Exemplary Register Architecture

FIG. 7 is a block diagram of a register architecture 700
according to one embodiment of the invention. In the embodi-
ment illustrated, there are 32 vector registers 710 that are 512
bits wide; these registers are referenced as zmm0 through
zmm31. The lower order 256 bits of the lower 16 zmm reg-
isters are overlaid on registers ymm0-16. The lower order 128

US 9,207,941 B2

7

bits of the lower 16 zmm registers (the lower order 128 bits of
the ymm registers) are overlaid on registers xmm0-15.

General-purpose registers 725—in the embodiment illus-
trated, there are sixteen 64-bit general-purpose registers that
are used along with the existing x86 addressing modes to
address memory operands. These registers are referenced by
the names RAX, RBX, RCX, RDX, RBP, RSI, RDI, RSP, and
R8 through R15.

Scalar floating point stack register file (x87 stack) 745, on
which is aliased the MMX packed integer flat register file
750—in the embodiment illustrated, the x87 stack is an eight-
element stack used to perform scalar floating-point opera-
tions on 32/64/80-bit floating point data using the x87 instruc-
tion set extension; while the MMX registers are used to
perform operations on 64-bit packed integer data, as well as to
hold operands for some operations performed between the
MMX and XMM registers.

Alternative embodiments of the invention may use wider or
narrower registers. Additionally, alternative embodiments of
the invention may use more, less, or different register files and
registers.

Exemplary Core Architectures, Processors, and Computer
Architectures

Processor cores may be implemented in different ways, for
different purposes, and in different processors. For instance,
implementations of such cores may include: 1) a general
purpose in-order core intended for general-purpose comput-
ing; 2) a high performance general purpose out-of-order core
intended for general-purpose computing; 3) a special purpose
core intended primarily for graphics and/or scientific
(throughput) computing. Implementations of different pro-
cessors may include: 1) a CPU including one or more general
purpose in-order cores intended for general-purpose comput-
ing and/or one or more general purpose out-of-order cores
intended for general-purpose computing; and 2) a coproces-
sor including one or more special purpose cores intended
primarily for graphics and/or scientific (throughput). Such
different processors lead to different computer system archi-
tectures, which may include: 1) the coprocessor on a separate
chip from the CPU; 2) the coprocessor on a separate die in the
same package as a CPU; 3) the coprocessor on the same die as
a CPU (in which case, such a coprocessor is sometimes
referred to as special purpose logic, such as integrated graph-
ics and/or scientific (throughput) logic, or as special purpose
cores); and 4) a system on a chip that may include on the same
die the described CPU (sometimes referred to as the applica-
tion core(s) or application processor(s)), the above described
coprocessor, and additional functionality. Exemplary core
architectures are described next, followed by descriptions of
exemplary processors and computer architectures.

Exemplary Core Architectures

In-Order and Out-of-Order Core Block Diagram

FIG. 8A is a block diagram illustrating both an exemplary
in-order pipeline and an exemplary register renaming, out-of-
order issue/execution pipeline according to embodiments of
the invention. FIG. 8B is a block diagram illustrating both an
exemplary embodiment of an in-order architecture core and
an exemplary register renaming, out-of-order issue/execution
architecture core to be included in a processor according to
embodiments of the invention. The solid lined boxes in FIGS.
8A-B illustrate the in-order pipeline and in-order core, while
the optional addition of the dashed lined boxes illustrates the
register renaming, out-of-order issue/execution pipeline and
core. Given that the in-order aspect is a subset of the out-of-
order aspect, the out-of-order aspect will be described.

In FIG. 8A, a processor pipeline 800 includes a fetch stage
802, a length decode stage 804, a decode stage 806, an allo-

20

40

45

50

8

cation stage 808, a renaming stage 810, a scheduling (also
known as a dispatch or issue) stage 812, a register read/
memory read stage 814, an execute stage 816, a write back/
memory write stage 818, an exception handling stage 822,
and a commit stage 824.

FIG. 8B shows processor core 890 including a front end
unit 830 coupled to an execution engine unit 850, and both are
coupled to amemory unit 870. The core 890 may be a reduced
instruction set computing (RISC) core, a complex instruction
set computing (CISC) core, a very long instruction word
(VLIW) core, or a hybrid or alternative core type. As yet
another option, the core 890 may be a special-purpose core,
such as, for example, a network or communication core,
compression engine, coprocessor core, general purpose com-
puting graphics processing unit (GPGPU) core, graphics
core, or the like.

The front end unit 830 includes a branch prediction unit
832 coupled to an instruction cache unit 834, which is
coupled to an instruction translation lookaside buffer (TLB)
836, which is coupled to an instruction fetch unit 838, which
is coupled to a decode unit 840. The decode unit 840 (or
decoder) may decode instructions, and generate as an output
one or more micro-operations, micro-code entry points,
microinstructions, other instructions, or other control signals,
which are decoded from, or which otherwise reflect, or are
derived from, the original instructions. The decode unit 840
may be implemented using various different mechanisms.
Examples of suitable mechanisms include, but are not limited
to, look-up tables, hardware implementations, programmable
logic arrays (PL.As), microcode read only memories (ROMs),
etc. In one embodiment, the core 890 includes a microcode
ROM or other medium that stores microcode for certain mac-
roinstructions (e.g., in decode unit 840 or otherwise within
the front end unit 830). The decode unit 840 is coupled to a
rename/allocator unit 852 in the execution engine unit 850.

The execution engine unit 850 includes the rename/alloca-
tor unit 852 coupled to a retirement unit 854 and a set of one
or more scheduler unit(s) 856. The scheduler unit(s) 856
represents any number of different schedulers, including res-
ervations stations, central instruction window, etc. The sched-
uler unit(s) 856 is coupled to the physical register file(s)
unit(s) 858. Each of the physical register file(s) units 858
represents one or more physical register files, different ones
of'which store one or more different data types, such as scalar
integer, scalar floating point, packed integer, packed floating
point, vector integer, vector floating point, status (e.g., an
instruction pointer that is the address of the next instruction to
be executed), etc. In one embodiment, the physical register
file(s) unit 858 comprises a vector registers unit and a scalar
registers unit. These register units may provide architectural
vector registers, vector mask registers, and general purpose
registers. The physical register file(s) unit(s) 858 is over-
lapped by the retirement unit 854 to illustrate various ways in
which register renaming and out-of-order execution may be
implemented (e.g., using a reorder buffer(s) and a retirement
register file(s); using a future file(s), a history buffer(s), and a
retirement register file(s); using a register maps and a pool of
registers; etc.). The retirement unit 854 and the physical reg-
ister file(s) unit(s) 858 are coupled to the execution cluster(s)
860. The execution cluster(s) 860 includes a set of one or
more execution units 862 and a set of one or more memory
access units 864. The execution units 862 may perform vari-
ous operations (e.g., shifts, addition, subtraction, multiplica-
tion) and on various types of data (e.g., scalar floating point,
packed integer, packed floating point, vector integer, vector
floating point). While some embodiments may include a
number of execution units dedicated to specific functions or

US 9,207,941 B2

9

sets of functions, other embodiments may include only one
execution unit or multiple execution units that all perform all
functions. The scheduler unit(s) 856, physical register file(s)
unit(s) 858, and execution cluster(s) 860 are shown as being
possibly plural because certain embodiments create separate
pipelines for certain types of data/operations (e.g., a scalar
integer pipeline, a scalar floating point/packed integer/packed
floating point/vector integer/vector floating point pipeline,
and/or a memory access pipeline that each have their own
scheduler unit, physical register file(s) unit, and/or execution
cluster—and in the case of a separate memory access pipe-
line, certain embodiments are implemented in which only the
execution cluster of this pipeline has the memory access
unit(s) 864). It should also be understood that where separate
pipelines are used, one or more of these pipelines may be
out-of-order issue/execution and the rest in-order.

The set of memory access units 864 is coupled to the
memory unit 870, which includes a data TLB unit 872
coupled to a data cache unit 874 coupled to a level 2 (L2)
cache unit 876. In one exemplary embodiment, the memory
access units 864 may include a load unit, a store address unit,
and a store data unit, each of which is coupled to the data TL.B
unit 872 in the memory unit 870. The instruction cache unit
834 is further coupled to a level 2 (1.2) cache unit 876 in the
memory unit 870. The L2 cache unit 876 is coupled to one or
more other levels of cache and eventually to a main memory.

By way of example, the exemplary register renaming, out-
of-order issue/execution core architecture may implement the
pipeline 800 as follows: 1) the instruction fetch 838 performs
the fetch and length decoding stages 802 and 804; 2) the
decode unit 840 performs the decode stage 806; 3) the
rename/allocator unit 852 performs the allocation stage 808
and renaming stage 810; 4) the scheduler unit(s) 856 per-
forms the schedule stage 812; 5) the physical register file(s)
unit(s) 858 and the memory unit 870 perform the register
read/memory read stage 814; the execution cluster 860 per-
form the execute stage 816; 6) the memory unit 870 and the
physical register file(s) unit(s) 858 perform the write back/
memory write stage 818; 7) various units may be involved in
the exception handling stage 822; and 8) the retirement unit
854 and the physical register file(s) unit(s) 858 perform the
commit stage 824.

The core 890 may support one or more instructions sets
(e.g., the x86 instruction set (with some extensions that have
been added with newer versions); the MIPS instruction set of
MIPS Technologies of Sunnyvale, Calif.; the ARM instruc-
tion set (with optional additional extensions such as NEON)
of ARM Holdings of Sunnyvale, Calif.), including the
instruction(s) described herein. In one embodiment, the core
890 includes logic to support a packed data instruction set
extension (e.g., AVX1, AVX2, and/or some form of the
generic vector friendly instruction format (U=0 and/or U=1)
previously described), thereby allowing the operations used
by many multimedia applications to be performed using
packed data.

It should be understood that the core may support multi-
threading (executing two or more parallel sets of operations
orthreads), and may do so in a variety of ways including time
sliced multithreading, simultaneous multithreading (where a
single physical core provides a logical core for each of the
threads that physical core is simultaneously multithreading),
or a combination thereof (e.g., time sliced fetching and
decoding and simultaneous multithreading thereafter such as
in the Intel® Hyperthreading technology).

While register renaming is described in the context of
out-of-order execution, it should be understood that register
renaming may be used in an in-order architecture. While the

10

15

20

25

30

35

40

45

50

55

60

10

illustrated embodiment of the processor also includes sepa-
rate instruction and data cache units 834/874 and a shared L2
cache unit 876, alternative embodiments may have a single
internal cache for both instructions and data, such as, for
example, a Level 1 (L1) internal cache, or multiple levels of
internal cache. In some embodiments, the system may
include a combination of an internal cache and an external
cache that is external to the core and/or the processor. Alter-
natively, all of the cache may be external to the core and/or the
processor.

Specific Exemplary In-Order Core Architecture

FIGS. 9A-B illustrate a block diagram of a more specific
exemplary in-order core architecture, which core would be
one of several logic blocks (including other cores of the same
type and/or different types) in a chip. The logic blocks com-
municate through a high-bandwidth interconnect network
(e.g., aring network) with some fixed function logic, memory
1/O interfaces, and other necessary /O logic, depending on
the application.

FIG. 9A is a block diagram of a single processor core,
along with its connection to the on-die interconnect network
902 and with its local subset of the Level 2 (L.2) cache 904,
according to embodiments of the invention. In one embodi-
ment, an instruction decoder 900 supports the x86 instruction
set with a packed data instruction set extension. An [.1 cache
906 allows low-latency accesses to cache memory into the
scalar and vector units. While in one embodiment (to simplify
the design), a scalar unit 908 and a vector unit 910 use sepa-
rate register sets (respectively, scalar registers 912 and vector
registers 914) and data transferred between them is written to
memory and then read back in from a level 1 (1) cache 906,
alternative embodiments of the invention may use a different
approach (e.g., use a single register set or include a commu-
nication path that allow data to be transferred between the two
register files without being written and read back).

The local subset of the 1.2 cache 904 is part of a global 1.2
cache that is divided into separate local subsets, one per
processor core. Each processor core has a direct access path to
its own local subset of the [.2 cache 904. Data read by a
processor core is stored in its [.2 cache subset 904 and can be
accessed quickly, in parallel with other processor cores
accessing their own local L2 cache subsets. Data written by a
processor core is stored in its own [.2 cache subset 904 and is
flushed from other subsets, if necessary. The ring network
ensures coherency for shared data. The ring network is bi-
directional to allow agents such as processor cores, 1.2 caches
and other logic blocks to communicate with each other within
the chip. Each ring data-path is 1012-bits wide per direction.

FIG. 9B is an expanded view of part of the processor core
in FIG. 9A according to embodiments of the invention. FIG.
9B includes an [.1 data cache 906 A part of the L1 cache 904,
as well as more detail regarding the vector unit 910 and the
vector registers 914. Specifically, the vector unit 910 is a
16-wide vector processing unit (VPU) (see the 16-wide ALU
928), which executes one or more of integer, single-precision
float, and double-precision float instructions. The VPU sup-
ports swizzling the register inputs with swizzle unit 920,
numeric conversion with numeric convert units 922A-B, and
replication with replication unit 924 on the memory input.

Processor with Integrated Memory Controller and Graph-
ics

FIG. 10 is a block diagram of a processor 1000 that may
have more than one core, may have an integrated memory
controller, and may have integrated graphics according to
embodiments of the invention. The solid lined boxes in FIG.
10 illustrate a processor 1000 with a single core 1002A, a
system agent 1010, a set of one or more bus controller units

US 9,207,941 B2

11

1016, while the optional addition of the dashed lined boxes
illustrates an alternative processor 1000 with multiple cores
1002A-N, a set of one or more integrated memory controller
unit(s) 1014 in the system agent unit 1010, and special pur-
pose logic 1008.

Thus, different implementations of the processor 1000 may
include: 1) a CPU with the special purpose logic 1008 being
integrated graphics and/or scientific (throughput) logic
(which may include one or more cores), and the cores
1002A-N being one or more general purpose cores (e.g.,
general purpose in-order cores, general purpose out-of-order
cores, a combination of the two); 2) a coprocessor with the
cores 1002A-N being a large number of special purpose cores
intended primarily for graphics and/or scientific (through-
put); and 3) a coprocessor with the cores 1002A-N being a
large number of general purpose in-order cores. Thus, the
processor 1000 may be a general-purpose processor, copro-
cessor or special-purpose processor, such as, for example, a
network or communication processor, compression engine,
graphics processor, GPGPU (general purpose graphics pro-
cessing unit), a high-throughput many integrated core (MIC)
coprocessor (including 30 or more cores), embedded proces-
sor, or the like. The processor may be implemented on one or
more chips. The processor 1000 may be a part of and/or may
be implemented on one or more substrates using any of a
number of process technologies, such as, for example, BiC-
MOS, CMOS, or NMOS.

The memory hierarchy includes one or more levels of
cache within the cores, a set or one or more shared cache units
1006, and external memory (not shown) coupled to the set of
integrated memory controller units 1014. The set of shared
cache units 1006 may include one or more mid-level caches,
such as level 2 (1.2), level 3 (L3), level 4 (1.4), or other levels
of cache, a last level cache (LLC), and/or combinations
thereof. While in one embodiment a ring based interconnect
unit 1012 interconnects the integrated graphics logic 1008,
the set of shared cache units 1006, and the system agent unit
1010/integrated memory controller unit(s) 1014, alternative
embodiments may use any number of well-known techniques
for interconnecting such units. In one embodiment, coher-
ency is maintained between one or more cache units 1006 and
cores 1002-A-N.

In some embodiments, one or more of the cores 1002A-N
are capable of multi-threading. The system agent 1010
includes those components coordinating and operating cores
1002A-N. The system agent unit 1010 may include for
example a power control unit (PCU) and a display unit. The
PCU may be or include logic and components needed for
regulating the power state of the cores 1002A-N and the
integrated graphics logic 1008. The display unit is for driving
one or more externally connected displays.

The cores 1002A-N may be homogenous or heterogeneous
in terms of architecture instruction set; that is, two or more of
the cores 1002A-N may be capable of execution the same
instruction set, while others may be capable of executing only
a subset of that instruction set or a different instruction set.

Exemplary Computer Architectures

FIGS. 11-14 are block diagrams of exemplary computer
architectures. Other system designs and configurations
known in the arts for laptops, desktops, handheld PCs, per-
sonal digital assistants, engineering workstations, servers,
network devices, network hubs, switches, embedded proces-
sors, digital signal processors (DSPs), graphics devices,
video game devices, set-top boxes, micro controllers, cell
phones, portable media players, hand held devices, and vari-
ous other electronic devices, are also suitable. In general, a
huge variety of systems or electronic devices capable of

25

40

45

55

12

incorporating a processor and/or other execution logic as
disclosed herein are generally suitable.

Referring now to FIG. 11, shown is a block diagram of a
system 1100 in accordance with one embodiment of the
present invention. The system 1100 may include one or more
processors 1110, 1115, which are coupled to a controller hub
1120. In one embodiment the controller hub 1120 includes a
graphics memory controller hub (GMCH) 1190 and an Input/
Output Hub (IOH) 1150 (which may be on separate chips);
the GMCH 1190 includes memory and graphics controllers to
which are coupled memory 1140 and a coprocessor 1145; the
IOH 1150 is couples input/output (/O) devices 1160 to the
GMCH 1190. Alternatively, one or both of the memory and
graphics controllers are integrated within the processor (as
described herein), the memory 1140 and the coprocessor
1145 are coupled directly to the processor 1110, and the
controller hub 1120 in a single chip with the IOH 1150.

The optional nature of additional processors 1115 is
denoted in FIG. 11 with broken lines. Each processor 1110,
1115 may include one or more of the processing cores
described herein and may be some version of the processor
1000.

The memory 1140 may be, for example, dynamic random
access memory (DRAM), phase change memory (PCM), or a
combination of the two. For at least one embodiment, the
controller hub 1120 communicates with the processor(s)
1110, 1115 via a multi-drop bus, such as a frontside bus
(FSB), point-to-point interface such as QuickPath Intercon-
nect (QPI), or similar connection 1195.

In one embodiment, the coprocessor 1145 is a special-
purpose processor, such as, for example, a high-throughput
MIC processor, a network or communication processor, com-
pression engine, graphics processor, GPGPU, embedded pro-
cessor, or the like. In one embodiment, controller hub 1120
may include an integrated graphics accelerator.

There can be a variety of differences between the physical
resources 1110, 1115 in terms of a spectrum of metrics of
merit including architectural, microarchitectural, thermal,
power consumption characteristics, and the like.

In one embodiment, the processor 1110 executes instruc-
tions that control data processing operations of a general type.
Embedded within the instructions may be coprocessor
instructions. The processor 1110 recognizes these coproces-
sor instructions as being of a type that should be executed by
the attached coprocessor 1145. Accordingly, the processor
1110 issues these coprocessor instructions (or control signals
representing coprocessor instructions) on a coprocessor bus
or other interconnect, to coprocessor 1145. Coprocessor(s)
1145 accept and execute the received coprocessor instruc-
tions.

Referring now to FIG. 12, shown is a block diagram of a
first more specific exemplary system 1200 in accordance with
anembodiment of the present invention. As shown in FIG. 12,
multiprocessor system 1200 is a point-to-point interconnect
system, and includes a first processor 1270 and a second
processor 1280 coupled via a point-to-point interconnect
1250. Each of processors 1270 and 1280 may be some version
of the processor 1000. In one embodiment of the invention,
processors 1270 and 1280 are respectively processors 1110
and 1115, while coprocessor 1238 is coprocessor 1145. In
another embodiment, processors 1270 and 1280 are respec-
tively processor 1110 coprocessor 1145.

Processors 1270 and 1280 are shown including integrated
memory controller (IMC) units 1272 and 1282, respectively.
Processor 1270 also includes as part of'its bus controller units
point-to-point (P-P) interfaces 1276 and 1278; similarly, sec-
ond processor 1280 includes P-P interfaces 1286 and 1288.

US 9,207,941 B2

13

Processors 1270, 1280 may exchange information via a point-
to-point (P-P) interface 1250 using P-P interface circuits
1278, 1288. As shown in FIG. 12, IMCs 1272 and 1282
couple the processors to respective memories, namely a
memory 1232 and a memory 1234, which may be portions of
main memory locally attached to the respective processors.

Processors 1270, 1280 may each exchange information
with a chipset 1290 via individual P-P interfaces 1252, 1254
using point to point interface circuits 1276, 1294, 1286, 1298.
Chipset 1290 may optionally exchange information with the
coprocessor 1238 via a high-performance interface 1239. In
one embodiment, the coprocessor 1238 is a special-purpose
processor, such as, for example, a high-throughput MIC pro-
cessor, a network or communication processor, compression
engine, graphics processor, GPGPU, embedded processor, or
the like.

A shared cache (not shown) may be included in either
processor or outside of both processors, yet connected with
the processors via P-P interconnect, such that either or both
processors’ local cache information may be stored in the
shared cache if a processor is placed into a low power mode.

Chipset 1290 may be coupled to a first bus 1216 via an
interface 1296. In one embodiment, first bus 1216 may be a
Peripheral Component Interconnect (PCI) bus, or a bus such
as a PCI Express bus or another third generation 1/O inter-
connect bus, although the scope of the present invention is not
so limited.

As shown in FIG. 12, various /O devices 1214 may be
coupled to first bus 1216, along with a bus bridge 1218 which
couples first bus 1216 to a second bus 1220. In one embodi-
ment, one or more additional processor(s) 1215, such as
coprocessors, high-throughput MIC processors, GPGPU’s,
accelerators (such as, e.g., graphics accelerators or digital
signal processing (DSP) units), field programmable gate
arrays, or any other processor, are coupled to first bus 1216. In
one embodiment, second bus 1220 may be a low pin count
(LPC) bus. Various devices may be coupled to a second bus
1220 including, for example, a keyboard and/or mouse 1222,
communication devices 1227 and a storage unit 1228 such as
a disk drive or other mass storage device which may include
instructions/code and data 1230, in one embodiment. Further,
an audio I/0O 1224 may be coupled to the second bus 1220.
Note that other architectures are possible. For example,
instead of the point-to-point architecture of FIG. 12, a system
may implement a multi-drop bus or other such architecture.

Referring now to FIG. 13, shown is a block diagram of a
second more specific exemplary system 1300 in accordance
with an embodiment of the present invention. Like elements
in FIGS. 12 and 13 bear like reference numerals, and certain
aspects of FIG. 12 have been omitted from FIG. 13 in order to
avoid obscuring other aspects of FIG. 13.

FIG. 13 illustrates that the processors 1270, 1280 may
include integrated memory and I/O control logic (“CL”") 1272
and 1282, respectively. Thus, the CL 1272, 1282 include
integrated memory controller units and include I/O control
logic. FIG. 13 illustrates that not only are the memories 1232,
1234 coupled to the CL 1272, 1282, but also that I/O devices
1314 are also coupled to the control logic 1272, 1282. Legacy
1/0 devices 1315 are coupled to the chipset 1290.

Referring now to FIG. 14, shown is a block diagram of a
SoC 1400 in accordance with an embodiment of the present
invention. Similar elements in FIG. 10 bear like reference
numerals. Also, dashed lined boxes are optional features on
more advanced SoCs. In FIG. 14, an interconnect unit(s) 1402
is coupled to: an application processor 1410 which includes a
set of one or more cores 202A-N and shared cache unit(s)
1006; a system agent unit 1010; a bus controller unit(s) 1016;

20

30

40

45

55

14

an integrated memory controller unit(s) 1014; a set or one or
more coprocessors 1420 which may include integrated graph-
ics logic, an image processor, an audio processor, and a video
processor; an static random access memory (SRAM) unit
1430; a direct memory access (DMA) unit 1432; and a display
unit 1440 for coupling to one or more external displays. Inone
embodiment, the coprocessor(s) 1420 include a special-pur-
pose processor, such as, for example, a network or commu-
nication processor, compression engine, GPGPU, a high-
throughput MIC processor, embedded processor, or the like.

Embodiments of the mechanisms disclosed herein may be
implemented in hardware, software, firmware, or a combina-
tion of such implementation approaches. Embodiments of the
invention may be implemented as computer programs or pro-
gram code executing on programmable systems comprising
at least one processor, a storage system (including volatile
and non-volatile memory and/or storage elements), at least
one input device, and at least one output device.

Program code, such as code 1230 illustrated in FIG. 12,
may be applied to input instructions to perform the functions
described herein and generate output information. The output
information may be applied to one or more output devices, in
known fashion. For purposes of this application, a processing
system includes any system that has a processor, such as, for
example; a digital signal processor (DSP), a microcontroller,
an application specific integrated circuit (ASIC), or a micro-
processor.

The program code may be implemented in a high level
procedural or object oriented programming language to com-
municate with a processing system. The program code may
also be implemented in assembly or machine language, if
desired. In fact, the mechanisms described herein are not
limited in scope to any particular programming language. In
any case, the language may be a compiled or interpreted
language.

One or more aspects of at least one embodiment may be
implemented by representative instructions stored on a
machine-readable medium which represents various logic
within the processor, which when read by a machine causes
the machine to fabricate logic to perform the techniques
described herein. Such representations, known as “IP cores”
may be stored on a tangible, machine readable medium and
supplied to various customers or manufacturing facilities to
load into the fabrication machines that actually make the logic
O Processor.

Such machine-readable storage media may include, with-
out limitation, non-transitory, tangible arrangements of
articles manufactured or formed by a machine or device,
including storage media such as hard disks, any other type of
disk including floppy disks, optical disks, compact disk read-
only memories (CD-ROMs), compact disk rewritable’s (CD-
RWs), and magneto-optical disks, semiconductor devices
such as read-only memories (ROMs), random access memo-
ries (RAMs) such as dynamic random access memories
(DRAMs), static random access memories (SRAMs), eras-
able programmable read-only memories (EPROMs), flash
memories, electrically erasable programmable read-only
memories (EEPROMs), phase change memory (PCM), mag-
netic or optical cards, or any other type of media suitable for
storing electronic instructions.

Accordingly, embodiments of the invention also include
non-transitory, tangible machine-readable media containing
instructions or containing design data, such as Hardware
Description Language (HDL), which defines structures, cir-
cuits, apparatuses, processors and/or system features
described herein. Such embodiments may also be referred to
as program products.

US 9,207,941 B2

15

Emulation (Including Binary Translation, Code Morphing,
Etc.)

In some cases, an instruction converter may be used to
convert an instruction from a source instruction set to a target
instruction set. For example, the instruction converter may
translate (e.g., using static binary translation, dynamic binary
translation including dynamic compilation), morph, emulate,
or otherwise convert an instruction to one or more other
instructions to be processed by the core. The instruction con-
verter may be implemented in software, hardware, firmware,
ora combination thereof. The instruction converter may be on
processor, off processor, or part on and part off processor.

FIG. 15 is a block diagram contrasting the use of a software
instruction converter to convert binary instructions in a source
instruction set to binary instructions in a target instruction set
according to embodiments of the invention. In the illustrated
embodiment, the instruction converter is a software instruc-
tion converter, although alternatively the instruction con-
verter may be implemented in software, firmware, hardware,
or various combinations thereof. FIG. 15 shows a program in
a high level language 1502 may be compiled using an x86
compiler 1504 to generate x86 binary code 1506 that may be
natively executed by a processor with at least one x86 instruc-
tion set core 1516. The processor with at least one x86 instruc-
tion set core 1516 represents any processor that can perform
substantially the same functions as an Intel processor with at
least one x86 instruction set core by compatibly executing or
otherwise processing (1) a substantial portion of the instruc-
tion set of the Intel x86 instruction set core or (2) object code
versions of applications or other software targeted to run on
an Intel processor with at least one x86 instruction set core, in
order to achieve substantially the same result as an Intel
processor with at least one x86 instruction set core. The x86
compiler 1504 represents a compiler that is operable to gen-
erate x86 binary code 1506 (e.g., object code) that can, with or
without additional linkage processing, be executed on the
processor with at least one x86 instruction set core 1516.
Similarly, FIG. 15 shows the program in the high level lan-
guage 1502 may be compiled using an alternative instruction
set compiler 1508 to generate alternative instruction set
binary code 1510 that may be natively executed by a proces-
sor without at least one x86 instruction set core 1514 (e.g., a
processor with cores that execute the MIPS instruction set of
MIPS Technologies of Sunnyvale, Calif. and/or that execute
the ARM instruction set of ARM Holdings of Sunnyvale,
Calif.). The instruction converter 1512 is used to convert the
x86 binary code 1506 into code that may be natively executed
by the processor without an x86 instruction set core 1514.
This converted code is not likely to be the same as the alter-
native instruction set binary code 1510 because an instruction
converter capable of this is difficult to make; however, the
converted code will accomplish the general operation and be
made up of instructions from the alternative instruction set.
Thus, the instruction converter 1512 represents software,
firmware, hardware, or a combination thereof that, through
emulation, simulation or any other process, allows a proces-
sor or other electronic device that does not have an x86
instruction set processor or core to execute the x86 binary
code 1506.

Embodiments of the invention include an apparatus com-
prising decode logic to decode square-multiply (SQRMUL)
instruction, the SQRMUL instruction including a first source
operand, a second source operand, and a destination operand,
execution logic to: calculate a square of a data value of a first
source operand, calculate a square of a data value of a second
source operand, calculate a multiplication of the data of the

40

45

55

60

16

first and second operands, wherein the calculations only use
one multiplication operation, and store the results in the des-
tination operand.

In some embodiments of the apparatus, one or more of the
following are implemented either in conjunction with each
other or individually: i) the destination operand is a general-
purpose register; ii) the square of a data value of a first source
operand is stored in lower order bits of the destination oper-
and, the square of a data value of a second source operand is
stored in higher order bits of the destination operand, and the
multiplication of the data of the first and second operands is
stored in middle order bits of the destination operand; iii) the
destination operand is a packed data register and each of the
three calculations is stored in a different data element of the
packed data register; iv) the execution logic to calculate the
square of the data value of the first source operand by, gen-
erating a temporary variable by left shifting the data value of
the first source operand by 2N and ORing that shifted value by
the data value of the second source operand, squaring the
temporary variable, and right shifting the temporary variable
by 4N bits, wherein N is log,(base of the data value); v) the
execution logic to calculate the multiplication of the data
value of the first source and second source operand by, gen-
erating a temporary variable by left shifting the data value of
the first source operand by 2N and ORing that shifted value by
the data value of the second source operand, squaring the
temporary variable, ANDing the squared temporary variable
with a value of ((2 left shifted by 2™) minus 1, and right
shifting by 2N plus 1, wherein N is log,(base of the data
value); vi) the execution logic to calculate the square of the
data value of the second source operand by, generating a
temporary variable by left shifting the data value of the first
source operand by 2N and ORing that shifted value by the
data value of the second source operand, squaring the tempo-
rary variable, ANDing the squared temporary variable with a
ones complement of a value of (1 left shifted by N) minus 1),
wherein N is log,(base of the data value).

Embodiments of the invention include a method of per-
forming in a computer processor a square-multiply (SQR-
MUL) instruction, the SQRMUL instruction including a first
source operand, a second source operand, and a destination
operand, the method comprising: calculating a square of a
data value of a first source operand, calculating a square of a
data value of a second source operand, calculating a multipli-
cation ofthe data of the first and second operands, wherein the
calculations only use one multiplication operation; and stor-
ing the results in the destination operand.

In some embodiments of the method, one or more of the
following are implemented either in conjunction with each
other or individually: i) the destination operand is a general-
purpose register; ii) the square of a data value of a first source
operand is stored in lower order bits of the destination oper-
and, the square of a data value of a second source operand is
stored in higher order bits of the destination operand, and the
multiplication of the data of the first and second operands is
stored in middle order bits of the destination operand; iii) the
destination operand is a packed data register and each of the
three calculations is stored in a different data element of the
packed data register; iv) the square of the data value of the first
source operand by, generating a temporary variable is calcu-
lated by left shifting the data value of the first source operand
by 2N and ORing that shifted value by the data value of the
second source operand, squaring the temporary variable, and
right shifting the temporary variable by 4N bits, wherein N is
log,(base of the data value); v) the multiplication of the data
value of the first source and second source operand is calcu-
lated by, generating a temporary variable by left shifting the

US 9,207,941 B2

17

data value of the first source operand by 2N and ORing that
shifted value by the data value of the second source operand,
squaring the temporary variable, ANDing the squared tem-
porary variable with a value of (2 left shifted by 2™) minus 1,
and right shifting by 2N plus 1, wherein N is log, (base of the
data value); vi) the square of the data value of the second
source operand is calculated by, generating a temporary vari-
able by left shifting the data value of the first source operand
by 2N and ORing that shifted value by the data value of the
second source operand, squaring the temporary variable,
ANDing the squared temporary variable with a ones comple-
ment of a value of ((1 left shifted by N) minus 1), wherein N
is log,(base of the data value).

Embodiments of the invention include a tangible machine-
readable medium including code which when executed by a
processor causes the processor to execute a method to per-
form a square-multiply (SQRMUL) instruction, the SQR-
MUL instruction including a first source operand, a second
source operand, and a destination operand, the method com-
prising: calculating a square of a data value of a first source
operand, calculating a square of a data value of a second
source operand, calculating a multiplication of the data of the
first and second operands, wherein the calculations only use
one multiplication operation; and storing the results in the
destination operand.

In some embodiments of the tangible machine-readable
medium, one or more of the following are implemented either
in conjunction with each other or individually: 1) the destina-
tion operand is a general-purpose register; ii) the square of a
data value of a first source operand is stored in lower order bits
of the destination operand, the square of a data value of a
second source operand is stored in higher order bits of the
destination operand, and the multiplication of the data of the
first and second operands is stored in middle order bits of the
destination operand; iii) the destination operand is a packed
data register and each of the three calculations is stored in a
different data element of the packed data register; iv) the
square of the data value of the first source operand by, gen-
erating a temporary variable is calculated by left shifting the
data value of the first source operand by 2N and ORing that
shifted value by the data value of the second source operand,
squaring the temporary variable, and right shifting the tem-
porary variable by 4N bits, wherein N is log,(base of the data
value); v) the multiplication of the data value of the first
source and second source operand is calculated by, generating
atemporary variable by left shifting the data value of the first
source operand by 2N and ORing that shifted value by the
data value of the second source operand, squaring the tempo-
rary variable, ANDing the squared temporary variable with a
value of ((2 left shifted by 2™) minus 1, and right shifting by
2N plus 1, wherein N is log,(base of the data value); vi) the
square of the data value of the second source operand is
calculated by, generating a temporary variable by left shifting
the data value of the first source operand by 2N and ORing
that shifted value by the data value of the second source
operand, squaring the temporary variable, ANDing the
squared temporary variable with a ones complement of a
value of (1 left shifted by N) minus 1), wherein N is log,(base
of the data value).

What is claimed is:

1. An apparatus comprising:

decode logic to decode square-multiply (SQRMUL)
instruction, the SQRMUL instruction including a first
source operand, a second source operand, and a destina-
tion operand;

execution logic to

5

10

—

5

20

30

35

40

45

50

55

65

18

calculate a square of a data value of a first source oper-
and,

calculate a square of a data value of a second source
operand,

calculate a multiplication of the data of the first and
second operands,

wherein the calculations only use one multiplication opera-
tion; and
store the results in the destination operand.

2. The apparatus of claim 1, wherein the destination oper-

and is a general-purpose register.

3. The apparatus of claim 1, the square of a data value of a
first source operand is stored in lower order bits of the desti-
nation operand, the square of a data value of a second source
operand is stored in higher order bits of the destination oper-
and, and the multiplication of the data of the first and second
operands is stored in middle order bits of the destination
operand.

4. The apparatus of claim 1, wherein the destination oper-
and is a packed data register and each of the three calculations
is stored in a different data element of the packed data register.

5. The apparatus of claim 1, wherein the execution logic to
calculate the square of the data value of the first source oper-
and by,

generating a temporary variable by left shifting the data
value of the first source operand by 2N and ORing that
shifted value by the data value of the second source
operand,

squaring the temporary variable, and

right shifting the temporary variable by 4N bits, wherein N
is log,(base of the data value).

6. The apparatus of claim 1, wherein the execution logic to
calculate the multiplication of the data value of the first source
and second source operand by,

generating a temporary variable by left shifting the data
value of the first source operand by 2N and ORing that
shifted value by the data value of the second source
operand,

squaring the temporary variable,

ANDing the squared temporary variable with a value of ((2
left shifted by 2™) minus 1, and

right shifting by 2N plus 1, wherein N is log,(base of the
data value).

7. The apparatus of claim 1, wherein the execution logic to
calculate the square of the data value of the second source
operand by,

generating a temporary variable by left shifting the data
value of the first source operand by 2N and ORing that
shifted value by the data value of the second source
operand,

squaring the temporary variable,

ANDing the squared temporary variable with a ones
complement of a value of ((1 left shifted by N) minus 1),
wherein N is log,(base of the data value).

8. A method of performing in a computer processor a
square-multiply (SQRMUL) instruction, the SQRMUL
instruction including a first source operand, a second source
operand, and a destination operand, the method comprising:

calculating a square of a data value of a first source oper-
and,

calculating a square of a data value of a second source
operand,

calculating a multiplication of the data of the first and
second operands,

wherein the calculations only use one multiplication opera-
tion; and

storing the results in the destination operand.

US 9,207,941 B2

19

9. The method of claim 8, wherein the destination operand
is a general-purpose register.

10. The method of claim 8, the square of a data value of a
first source operand is stored in lower order bits of the desti-
nation operand, the square of a data value of a second source
operand is stored in higher order bits of the destination oper-
and, and the multiplication of the data of the first and second
operands is stored in middle order bits of the destination
operand.

11. The method of claim 8, wherein the destination operand
is a packed data register and each of the three calculations is
stored in a different data element of the packed data register.

12. The method of claim 8, wherein calculating the square
of the data value of the first source operand comprises:

generating a temporary variable by left shifting the data
value of the first source operand by 2N and ORing that
shifted value by the data value of the second source
operand,

squaring the temporary variable, and

right shifting the temporary variable by 4N bits, wherein N
is log,(base of the data value).

13. The method of claim 8, calculating the multiplication of
the data value of the first source and second source operand
comprises:

generating a temporary variable by left shifting the data
value of the first source operand by 2N and ORing that
shifted value by the data value of the second source
operand,

squaring the temporary variable,

ANDing the squared temporary variable with a value of ((1
left shifted by 2*) minus 1, and

right shifting by 2N plus 1, wherein N is log,(base of the
data value).

14. The method of claim 8, wherein calculating the square

of the data value of the second source operand comprises:
generating a temporary variable by left shifting the data
value of the first source operand by 2N and ORing that
shifted value by the data value of the second source
operand,

squaring the temporary variable,

ANDing the squared temporary variable with a ones
complement of a value of ((2 left shifted by N) minus 1),
wherein N is log,(base of the data value).

15. A tangible machine-readable medium including code
which when executed by a processor causes the processor to
execute a method to perform a square-multiply (SQRMUL)
instruction, the SQRMUL instruction including a first source
operand, a second source operand, and a destination operand,
the method comprising:

10

—_
w

20

30

35

40

45

20

calculating a square of a data value of a first source oper-

and,

calculating a square of a data value of a second source

operand,

calculating a multiplication of the data of the first and

second operands,

wherein the calculations only use one multiplication opera-

tion; and

storing the results in the destination operand.

16. The method of claim 15, wherein the destination oper-
and is a general-purpose register.

17. The method of claim 15, the square of a data value of a
first source operand is stored in lower order bits of the desti-
nation operand, the square of a data value of a second source
operand is stored in higher order bits of the destination oper-
and, and the multiplication of the data of the first and second
operands is stored in middle order bits of the destination
operand.

18. The method of claim 15, wherein calculating the square
of the data value of the first source operand comprises:

generating a temporary variable by left shifting the data

value of the first source operand by 2N and ORing that
shifted value by the data value of the second source
operand,

squaring the temporary variable, and

right shifting the temporary variable by 4N bits, wherein N

is log,(base of the data value).

19. The method of claim 15, calculating the multiplication
of'the data value of the first source and second source operand
comprises:

generating a temporary variable by left shifting the data

value of the first source operand by 2N and ORing that
shifted value by the data value of the second source
operand,

squaring the temporary variable,

ANDing the squared temporary variable with a value of ((1

left shifted by 2™) minus 1, and

right shifting by 2N plus 1, wherein N is log,(base of the

data value).

20. The method of claim 15, wherein calculating the square
of the data value of the second source operand comprises:

generating a temporary variable by left shifting the data

value of the first source operand by 2N and ORing that
shifted value by the data value of the second source
operand,

squaring the temporary variable,

ANDing the squared temporary variable with a ones

complement of a value of ((2 left shifted by N) minus 1),
wherein N is log,(base of the data value).

#* #* #* #* #*

